Geometric Biplane Graphs I: Maximal Graphs

نویسندگان

  • Alfredo García Olaverri
  • Ferran Hurtado
  • Matias Korman
  • Inês Matos
  • Maria Saumell
  • Rodrigo I. Silveira
  • Javier Tejel
  • Csaba D. Tóth
چکیده

We study biplane graphs drawn on a finite point set S in the plane in general position. This is the family of geometric graphs whose vertex set is S and can be decomposed into two plane graphs. We show that two maximal biplane graphs—in the sense that no edge can be added while staying biplane—may differ in the number of edges, and we provide an efficient algorithm for adding edges to a biplane graph to make it maximal. We also study extremal properties of biplane graphs such as the maximum number of edges and the largest minimum degree of biplane graphs over n-element point sets. In a companion paper we study how to draw a biplane graph on a given point set S, or how to augment a given biplane graph on S, in such a way that the resulting graph is biplane and has good connectivity properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Biplane Graphs II: Graph Augmentation

We study biplane graphs drawn on a finite point set S in the plane in general position. This is the family of geometric graphs whose vertex set is S and which can be decomposed into two plane graphs. We show that every sufficiently large point set admits a 5-connected biplane graph and that there are arbitrarily large point sets that do not admit any 6connected biplane graph. Furthermore, we sh...

متن کامل

On Third Geometric-Arithmetic Index of Graphs

Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.

متن کامل

Eccentric Connectivity Index of Some Dendrimer Graphs

The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.

متن کامل

Geometric-Arithmetic Index of Hamiltonian Fullerenes

A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. In this paper we compute the first and the second geometric – arithmetic indices of Hamiltonian graphs. Then we apply our results to obtain some bounds for fullerene.

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015